

The New Space Race in Genomics

2023 ICSA Midwest Chapter & NIC-ASA Joint Fall Meeting Oct. 13, 2023 Xinkun Wang, Ph.D., Director Northwestern University Sequencing (NUSeq) Core

Recent Genomics Technology Trends

• More data at lower cost: sequencing technologies are still rapidly evolving

Recent Genomics Technology Trends

• Higher resolution: from bulk tissue/cell population to individual cells

Source: https://www.the-scientist.com/university/single-cell-sequencing-in-a-nutshell-71048

Recent Genomics Technology Trends

• Race into space: Spatial context matters

Soruce: https://www.science.org/content/webinar/mining-transcriptome-using-spatial-transcriptomics-comprehensive-2d-3d-visualization-all-mrnas-tissue-sections

Spatial Transcriptomics

- Not a brand new technology: started from 1970s, but at a much lower throughput – one gene at a time
- The current surge in spatial transcriptomics is due to the demand to simultaneously quantify a large number of genes, from hundreds, thousands, to the entire genome

 $\label{eq:localization} \mbox{ Localization of specific RNAs in Drosophila embryos. }$

Chromosoma (Berl) (1989) 98:81-85

Four major approaches

- Highly multiplexed single molecule fluorescent in situ hybridization (smFISH)
 - Augmentation of the traditional in situ hybridization approach
 - Example: MERFISH (Vizgen)

Four major approaches (2)

- Selection of region of interest
 - Microdissection or capture of ROI
 - Example: Nanostring GeoMx Digital Spatial Profiler

Nature Methods volume 19, pages534–546 (2022)

Four major approaches (3)

- Spatial barcoding followed by sequencing
 - Each spatial region is indexed by specific barcode
 - Example: Visium from 10x Genomics

Nature Methods volume 19, pages534–546 (2022)

NUSeq data

Four major approaches (4)

- In Situ Sequencing
 - Directly sequence transcripts on the spot
 - Example: Xenium from 10x Genomics

Gyllborg et al, Nucleic Acids Research (2020)

Key Parameters

- Resolution: from 50 µm to 10 nm
- Number of genes detected: from a few hundred to the entire genome
- Detection efficiency: from 5% to close to 100%
 - Molecular capture and optical crowding are limiting factors

• Gene-by-location matrix

	Spatial coordinate 1	Spatial coordinate 2		Spatial coordinate m
Gene 1	18	0	•••	3
Gene 2	2	3	•••	5
•••	•••	•••	•••	•••
Gene n	0	8		20

Spatial Transcriptomics Data Distributions

- Commonly used data distributions
 - Negative binomial distribution, especially zero-inflated negative binomial distribution
 - Poisson distribution
 - Gaussian distribution
 - Gamma distribution
 - Spatial point process models
 - Others
 - Can be platform or even gene dependent

Major Goals

- Identification of spatially variable genes
 - Spatial location
 - Histology image
 - Gene expression profile

• Identification of spatial domains

Spatial domains

Nature Methods volume 18, pages1342–1351 (2021)

- Cell type identification (if spatial resolution can achieve single cell)
 - Based on dimensionality reduction, with the assumption that cells of the same type are similar to each other in terms of gene expression and therefore cluster together

• Spatial decomposition: if spatial resolution larger than a cell, determination of what cell types are in each capture region, i.e., cellular deconvolution

Genome Biology volume 23, Article number: 83 (2022)

Other Goals

- Gene imputation for missing genes
 - Often based on the use of single cell RNA-seq data
- Predicting spatial location of cells from single cell RNA-seq data
- Inference of cell-cell interactions

- Inherently spatial, and gene expression can vary significantly from one location to another in the same tissue
- Signal sparsity: many gene expressions are missed with signal drop-out
 - Low capture efficiency
- High dimensional: large number of genes
- Low resolution for whole transcriptome platforms (this will improve over time)
- How to integrate spatial transcriptomics data with other data, including single cell sequencing, other –omics, and pathology (clinical) data

Northwestern Medicine[®]

Thank you! Questions?