

Whole Genome and Full-Length Transcriptome from the Same Single Cells using ResolveOME

Whole Genome Full Length Transcriptome Same Single cell

xinkun.wang@northwestern.edu Director, NUSeq Core Facility

John Bon – john.bon@BioSkryb.com Christina Ulrich – <u>Christina.Ulrich@BioSkryb.com</u> Andrew Rohs – <u>Andrew.Rohs@BioSkryb.com</u>

Agenda

- BioSkryb Genomics- Single-Cell Multiomics
- ResolveDNA[®]
 - WGA with great genomic coverage and uniformity for **SNV** and **CNV analysis** from the same single cell
- **ResolveOME**[™]
 - a unified system for single-cell full-length mRNA transcriptome, whole genome amplification and NGS library preparation for sequencing
- Kits to do wet lab in your own laboratory, core lab or services lab at BioSkryb
- **BaseJumper**[™] Data analysis solution
- Workflows and data

End-to-End Single-Cell Omics Workflow

Whole Genome or Whole Exome SEQ

The Technology Underpinning BioSkryb: Primary Template-Directed Amplification (PTA)

Enables high resolution variant calling

- CNVs, SNVs, structural variants
- improved uniformity & coverage, reproducibility and variant call rates

Superior Allelic Balance

ResolveDNA Performance Characteristics

Method	ResolveDNA	Mixed Method A	MDA A	MDA B	Mixed Method B	Mixed Method C	DOP-PCR	
Genome Mapping	97%	91%	88%	55%	88%	55%	52%	
Genome Recovery	97%	73%	65%	59%	50%	33%	20%	
CV of coverage	0.8	1.3	1.8	1.8 2.3		3.2	3.6	
SNV sensitivity	92%	70%	65%	55%	45%	30%	19%	
SNV Precision	99%	88%	87%	88%	28%	35%	35%	

Sensitivity are based on positions that are 25X coverage for ResolveDNA, Values for alternaive methods taken from Gonzalez, etal. PNAS¹ CV: Coefficient of Variation SNV: Single Nucelotide Variant

ResolveDNA outperforms other common methods with respect to data quality and variant calling metrics

Case Study: Age-related Neuronal Mutation Accumulation

Indels in gene-regulatory elements have a considerable effect on genome integrity in human neurons

TECHNICAL REPORT https://doi.org/10.1038/s41588-022-01180-2

Single-cell genome sequencing of human neurons identifies somatic point mutation and indel enrichment in regulatory elements

Lovelace J. Luquette ⁽¹⁾, Michael B. Miller ⁽²⁾, ^{2,3,4,5,6,6}, Zinan Zhou^{2,16}, Craig L. Bohrson¹, Yifan Zhao ⁽³⁾, Hu Jin ⁽⁶⁾, Doga Gulhan¹, Javier Ganz ⁽⁶⁾, Sara Bizzotto ⁽⁶⁾, Samantha Kirkham ⁽⁶⁾, Tino Hochepied^{7,8}, Claude Libert^{7,8}, Alon Galor¹, Junho Kim ⁽⁶⁾, ^{2,9}, Michael A. Lodato¹⁰, Juan I. Garaycoechea¹¹, Charles Gawad ⁽⁶⁾, ^{12,13}, Jay West¹⁴, Christopher A. Walsh ⁽⁶⁾, ^{2,3,15,17} ⁽⁶⁾ and Peter J. Park ⁽⁶⁾, ^{1,17} ⁽⁶⁾

- Indels accumulate slowly, requiring single cell techniques sensitive to characterize **low** individual cell mutational burden
- ResolveDNA is used because it provides sensitivity and eliminates false discovery rates for single-cell SNV, CNV and Indels analysis, ideal for characterizing single-cell mutational burden
- ResolveDNA is ideal for elucidating mechanisms of action for progressive pathologies such as Alzheimer's Disease and other neurological disease investigation

Processing Pre-frontal Cortices (PFCs) with ResolveDNA

- Nuclei from single neurons were collected from the PFCs of brains of 17 individuals ranging in age from infancy to elderly
- Single nuclei was amplified by using ResolveDNA (PTA) or multiple displacement amplification (MDA) chemistry and sequenced to high coverage
- To determine chemistry utility large scale characteristics such as copy number variation, amplification uniformity and allelic balance was assessed

Characteristics of ResolveDNA in Single Nuclei from PFCs

Copy number variation

Amplification uniformity

Allelic balance

ResolveDNA yields superior accuracy in

copy number analysis compared to MDA.

ResolveDNA and MDA-amplified neuronal genomes show **significantly improved amplification uniformity** via ResolveDNA and PTC compared to MDA. For germline heterozygous SNPs the evenness of amplification was measured between homologous alleles in a diploid cell. On average, 71% of each ResolveDNA PTA genome was balanced compared with **only 39% of each MDA genome.**

PTA Outclasses MDA-based Approaches in somatic SNV & InDel

Genome-wide, extrapolated accumulation rate of **somatic SNVs** in PTA-(triangles) and MDA-(circles) amplified single human neurons.

Somatic SNV sensitivity

Total rate of SNVs in single human neurons exposes sensitivity issues in MDA coverage, caused by FDR from amplification artefacts.

Genome-wide extrapolated rate of **somatic indel** accumulation.

Somatic Indel sensitivity

"As was the case for SNVs, MDA yielded a higher accumulation rate estimate of 6.0 somatic indels per year and we again attribute this to MDA artifacts"

ResolveOME

Enabling Comprehensive Single-Cell Multiomic Analysis

ResolveOME

Droplet DNA-seq

Droplet RNA-seq

ResolveOME provides >3 fold more data per single-cell than droplet methodologies and provides a comprehensive view of single-cells important to drive actionable multiomic analysis.

BioSkryb

ResolveOME Workflow Overview

Unified workflow enables DNA and RNA analysis from the same cell

- Cells can be collected by any means (e.g., FACS, LCM, cell culture, frozen 96 or 384 well plates).
- Optimum input is 4pg or single cell and is applicable to both single-cell and bulk sample inputs.
- Entire ResolveOME workflow is completed in 2-3 days from cell sorting to sequencing-ready libraries.
- Generally, the workflow is adopted complementary to droplet-based methodologies looking at a few thousand cells (vs hundreds of thousands of cells) as ResolveOME is offers more in-depth data per single-cell

ResolveOME: A Single Cell's <u>Most Complete</u> Genome and Transcriptome

DNA Performance Characteristics	Observed Values
Accuracy	99.5%
Sensitivity	97.1%
Specificity	99.2%
Precision	99.5%
Allelic Balance	98.4%
Genome Coverage	97.1%

RNA Performance Characteristics	Observed Values
Genes Detected	4,546 Genes*
Reportable Range	6057
Average Concordance	0.91
Reproducibility (CV)	43.3%

*NA12878/HG001 cells

ResolveOME Transcriptome Amplification

The industry-leading performance of **ResolveOME** coupled with superior transcriptome capture enables genomic and transcriptomic analysis from an individual cell.

ResolveOME High Quality Transcript and Genome Data

- Full-length detection of transcriptomic features including 5' and 3' UTR overcoming the bias often observed with end counting methodologies
- Detection of ~7,000 genes per singlecell
- More in depth expression analysis and variant detection in the mRNA
- Splice variants, SNVs, fusion genes and other structural variants detected with full length transcriptome analysis

Ductal Carcinoma in Situ (DCIS) Collaboration – Customer study

CNV analysis: Patient TME-19-016

Normal breast single cells

Tumor single cells

Copy number analysis of ductal carcinoma *in situ* with and without recurrence

Kylie L Gorringe, Sally M Hunter, Jia-Min Pang, Ken Opeskin, Prue Hill, Simone M Rowley, David Y H Choong, Ella R Thompson, Alexander Dobrovic, Stephen B Fox, G Bruce Mann & Ian G Campbell 🖂

Modern Pathology 28, 1174–1184 (2015) Cite this article

Copy Number Insights Are Missed by Bulk Sequencing

...but misses other discrete alterations in EpCAM enriched cells

Integration of *PIK3CA* mutation status and copy number loss in single cells

- Striking single cell heterogeneity revealed, even with 19 tumor cells from one patient
- SNV / CNV interplay! Known interaction between p53 and PI3 kinase; Rb and PI3 kinase. Some cells had a PIK3CA variant but no CNVs.
 - These cells may be pre-malignant

Immune signatures- EpCAM low cells: top 50 variable genes Cell Identity

gate

Summary - ResolveOME

Single-cell multiomic analysis combining primary template-directed amplification with full transcript reverse transcription

Unified workflow interrogating DNA and mRNA from the same cell

✓ NGS library preparation kits included with **ResolveOME** kits

Cell Surface Marker Detection DNA, RNA, and Extracellular Protein

Exposing Single-Cell Surface Protein Profiles in DCIS Samples

- + 11 "epithelial" oligo conjugated antibodies
- = 165 oligo conjugated antibodies

BaseJumper™ Multiomic Analysis Solution

BaseJumper is a scalable cloud-based solution that enables large dataset interpretation

- Single cell multiomics is redefining how complex tissues and illnesses are studied.
- Researchers can examine their own multiomic single cell data.

MultiQC Quality Reports																	
BaseJumper' powered by EinSkryb Genomics X Accelerating genomic explore										ploratio	ration. Demo Workspace 💉 🚊						
ResolveDNA													_	_			_
ResolveOME	MultiOC File Explorer Vi	sualization										_					
Request Custom Services	Multicic Hile Explorer Vi	suarization															
Credit Usage	MultiQC	Multi	ÐC.										D	io	Clar	wh	_
Settings													- 41				
Platp	General Stats	Cetts explored. Answers revealed.										otto					
IOV	Selected Metrics	nf-wgs-pipeline The report aggregates all metrics from WGS/Exome/Targeted analyses to help evaluate the performance of single-cell libraries.															
Admin Console	All Metrics	The report aggre	gates all me	etrics fro	m WGS/Exc	ime/ larget	ed ana	lyses to I	help eva	iluate the perf	ormance of sin	gle-cell librar	1es.				*
	fastp	Report generated on 202	2-06-01, 10:40 bi	esed on data	in: /tmp/roof.0w2	ID/06/YT1											A
	Filtered Reads																
	Duplication Rates	Welcome! Not sure where to start? Vectors toronal vector (5.05)									dorit show again 🗶 🧔 🌀						
	Insert Sizes																<u>±</u>
	Sequence Quality	General Sta	tistics														н
	GC Content	A Convision B Contr	ure Courses	PK She	ning Nyrows and Ny	· columns.											
	N content	Sample Name	% Duplication	% > Q30	Mb Q30 bases		5 PF	% Adapter	Length	% Homo sapiens	% Top 5 Species	% Unclassified	ins, size	≥ 1X	MAligned	M Total r	, 🛛
	FastQC	H3LKCC-Lot54-100pg	0.5%	93.9%	313.5	39.7%	95.8%	0.2%	75 tp	99.2%	99.3%	0.7%	299	4.4%	2.0	2.0	
	Sequence Counts	H3LKCC-Lot54-SC1	0.4%	93.0%	294.1	30.1%	95.4%	0.2%	75 bp	99.2%	99.2%	0.9%	299	4.3%	2.0	2.0	
	Sequerce Quality Holograms	H3LKCC-Lot54-8C2	0.5%	93.2%	308.1	30.0%	95.5%	0.2%	75 tsp	99.3%	99.3%	0.7%	297	4.4%	2.0	2.0	
	Per Sequence Quality Scores Per Base Sequence Content	H3LKCC-Lot54-SC3	0.4%	93.2%	325.7	39.2%	98.5%	0.2%	75 tip	99.2%	99.2%	0.7%	302	4.3%	2.0	2.0	
	Per Base Sequence Content	H3LKCC-Lot54-8C4	0.5%	93.4%	295.5	30.1%	95.5%	0.2%	75 tp	99.2%	99.2%	0.7%	299	4.3%	2.0	2.0	
	Per Base N Content	H3LKCC-Lot54-SC5	0.4%	93.1%	292.4	39.2%	95.3%	0.2%	76 tıp	99.2%	99.2%	0.9%	300	4.3%	2.0	2.0	
	Sequence Length Distribution																
	Sequence Duplication Levels	0-1															
	Degenero Datalina Lanko Overgeneroski Jengeres Selected Metrics																
	Adapter Context Selected metrics are subset of all metrics that provides overview of the sample quality assessment.																
	Status Chucks de Copy teste 🖬 Configure Columns de Port Steaming Ny Inna and Ny Catarrens.																
	Kraken	sample_name			- chrM				% Aligned		4 Error	Insert Size		Total Reads			. 1
	QuelMap	H3LKCC-Lot54-100pg H3LKCC-Lot54-9C1			23						0.63 301			4 450 094			
	Coverage histogram	HILKCC-Let64-SC2			23		11.41 99.96					302					- I
	Cumulative genome coverage				10.92						0.65 205		4 332 200				. I
	Insert size histogram	H3LKCC-Lot54-SC4	53	11.53					500		4 210 30						
	GC context distribution	maLNUC-L0054-8C4		ľ		-11-13								****0.30	· · · ·		

Simple, User Friendly Interface **Easily Accessible from Anywhere** Built in Step-by-Step Workflows **Robust Pipelines for QC and Multi-Omic Analyses Secure Data and Project Analyses** Storage **Fully Integrated and Interactive Visualizations**

End-to-End Single-Cell Omics Workflow

Kits to do wet lab in your own laboratory or services at BioSkryb

BioSkyb GENOMICS

Thank you

Whole Genome Full Length Transcriptome Same Single cell

xinkun.wang@northwestern.edu Director, NUSeq Core Facility

John Bon – <u>john.bon@BioSkryb.com</u> Christina Ulrich – <u>Christina.Ulrich@BioSkryb.com</u> Andrew Rohs – <u>Andrew.Rohs@BioSkryb.com</u>

www.bioskyrb.com